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INTRODUCTION

Signal Detection Theory (SDT) isoften usedin studiesof sensory psychol ogy and perception
to describe laboratory experimentsin which subjectsare asked to detect small changesin very well-
controlled, precisely defined stimuli such astheintensity of amonochromatic light or the frequency
of a pure tone. Consequently, it may seem odd that such a theory can be of any practicd use in
describing the situation that occurs when the driver of an automobile approaches a grade crossing
and must decide whether it is safe to drive across the railroad track(s). Locomotives and trainsare
not well-controlled and precisely defined stimuli like those used in the sensory laboratory. By
comparison with the stimulus changes used in the laboratory, a locomotive surely represents an
enormous potentia change in the sensory environment of the automobiledriver. Why then isthis
theory applicable to the driver at the grade crossing? The answer to this question lies in an
examination of the types of accidentsthat occur at grade crossings which suggest that motoristshave
difficulty with the tasks of detecting trains and related decision-making at grade crossings. For
instance, motorists regularly drive into the side of passing trains at grade crossings and drive
directly infront of approaching trains at closerange. These accidents suggest that an examination
of the grade crossing from the perspective of SDT and human information processing may provide
a useful model for analysis, research, and the development of new strategies for grade crossing
accident prevention.

Theplan of thisanalysisisasfollows. In Section|, thebasic model of SDT isdescribed with
reference to adriver approaching a grade crossing with atrain al so approaching. The driver's task
is to decide if he can cross the tracks safely or if he must gop. The treatment employs some
mathematics, which can be omitted without losing the sense of the model. 1n describing the basic
model, it becomes apparent that accident rates for different types of grade crossings are predicted
by the SDT model to vary withtrainfrequency. Section |l examinesaccident ratesat grade crossings
and develops a Poisson process model of accident probability with reference to the frequency of
trainsand cars at grade crossings. The Poisson model predicts maximal accident rates and is useful
for evaluating the effectiveness of different grade crossing devices in preventing accidents. The
maximal accident rate concept isalso usedin Section |l in applying SDT to aquantitative analysis
of grade crossing devices. Section IV examines the implications of the SDT analysis for various
schemes to improve grade crossing safety, contrasts the SDT model with existing models of
accident prediction, and suggests areas of research which can be implemented to achieve Goal # 2
of the RDV Action Plan for Grade Crossings:

Improve our understanding and knowledge of motorist behavior at grade crossings
in causing collisions between trains and motor vehicles - including: 1) detection,
recognition, perception and comprehension of warning devices and trains; and 2)
decison making, perception of collision risk, and motivation involved in
circumvention of active warning devices - in order to improve upon design,
deployment and operation of grade crossing protection devices.

Section V models the performance of an ideal motorist who uses information concerning the
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distances of his vehicle and the train from the intersection to determine whether to cross the
intersection or to stop. Visua search with and without auditory localization (train horn) is
incorporated into the model.
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|. SIGNAL DETECTION THEORY

Detection of a Signal in a Background of Noise

The point of view to be developed here is that a motorist at a grade crossing with an
approaching train is in an analogous situation to an observer attempting to detect a signal in a
background of noise (for amore detailed description of SDT than is provided in this section consult
Green and Swets, 1974 and Egan, 1975). In both instances, it isoften difficult to distinguish signal
from noise, and a decision is made which is not solely dependent upon the sensory information
alone. From thispoint of view, thelocomotiveisamulti-sensory signal, and the sameistrue of the
background noise. The train or locomotive has auditory, visual, tactile (vibration), and olfactory
components which contribute to its "signalness'. The background noise also congsts of a variety
of auditory, visual, tactileand olfactory components. Inthe SDT model both thesignal and the noise
are represented as a single perceptual continuum which variesin magnitude. Signals, such asthe
locomotive, are capable of producing perceptual magnitudes which vary between encounters, even
when all of the sensory components areidentical. Consequently, there is aprobability distribution
of perceptual magnitudeswhich are associated with aparticul ar locomotive configuration (e.g., Size,
loudness, color, brightness, etc.). This distribution of perceptual magnitudes has a mean and
variance which can be used to specify the perceptual magnitude of the locomotive as a signd.
Similarly, the background noise also has adistribution of perceptual magnitudes which can also be
specified by a mean and a variance. For the sake of simplicity it is often assumed that the
distribution of perceptual magnitudesfor noise and signal are gaussian or normal. Additionally, the
basic SDT moded assumes that the variances of signal and noise distributions are equal. Neither
assumption is critica to the theory.

Figure 1 isatypical representation of noise and signal-plus-noise distributionsin SDT. It
shouldimmediately be noted that the distributions overlap. Thechief difference, fromthis point of
view, between a signal and noise is that, on the average, signals have a larger mean percept
magnitude than noises. The perceiver (the motorist in our case) can only distinguish between a
signal and noise on the basis of the magnitude of the perceptual event. Given aperceptual event, the
perceiver must decide if the event representsasignal or noise. The perceiver does this by adopting
acriterion. In Fig. 1, a criterion line has been drawn to illustrate. If a perceptual event has a
magnitude which fals to the right of the criterion, the perceiver decides that the event isasignal.
If the event has a magnitude which fdls to the |eft of the criterion, the perceiver decides that the
eventisnot asignal. Hence, we havethefollowing four-foldtable, Table 1. Therearetwo response
categories: "Yes, Stop (thetrainistoo close).” and "No, Don't stop (thetrain is not too close).”, and
there are two possible events: atrain is close to the crossing and a train is not too close to the
crossing (or not present).
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Figure 1. Noise and signal-plus-noise distributions. A criterion line is drawn to show how the
probabilities of Table 1 are determined.

TABLE 1. STIMULUS AND RESPONSE MATRIX
FOR A MOTORIST AT A GRADE CROSSING.

Y es, Stop. No, don't stop.
Trainiscose VALID STOP ACCIDENT
(motorist stops at crossing) (motorist doesn't stop)
Trainisnot close, or FALSE STOP CORRECT CROSSING
No train in vicinity (motorist stops unnecessarily) | (motorist crosses tracks
safely)

If atrain is close and the motorist decides not to stop, an ACCIDENT (AC) occurs. The
decisionto stopwhenatrainiscloseistermedaVALID STOP (VS). Thedecision criterion divides
the distribution of "trainisclose" percepts (signal distribution in Fig. 1) into VALID STOPs and
ACCIDENTSs. The criterion also divides the distribution of "train is not close" percepts (noise
distribution in Fig. 1) into two parts: FALSE STOPs (FSs) and CORRECT CROSSINGs (CCs).
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Since the two distributions are probability distributions, the probability of a VS (P(VYS)) is the
complement of the probability of an AC (P(AC)), etc. (i.e,, P(AC) = 1- P(VS)). Moreover, since
both distributions are divided by the criterion, only two probabilities are needed to totally describe
the effect of changesin the criterion. In SDT these are usually P(VS) and P(FS).

The first point to note is that changes in the criterion do not change the detectability of the
proximity of thetran. Theonly aspect of thismodel which is capable of altering detectability isthe
separation of the signal and noise distributions. Inthisregard, thereare three options: decreasethe
level of background noise, increase the level of the signal, and change the variance of one or both
distributions. In alater section we will address the nature of the signal and the nature of the noise
with aview to understanding safety issues. Changesin the criterion only change the probabilities
of the outcomes, while changesin the distributions can effect achange in both detectability and the
probabilities of the outcomes. Factors which affect the criterion are very important, especialy if it
is not possible to achieve an increase in detectability. These factors will also be addressed in a
subsequent section.

To illustrate basic features of the SDT model, consider the criterion in Fig. 1 which is set
at apercept magnitude of 1.65. Asnoted above, detectability is not influenced by the setting of the
criterion, athough the specific location of the criterion will determine the probability of accidents
(P(AC). For example, thevaluesof P(VS) and P(FS) inFig. 1 at thisvalue of the criterion are 0.055
and 0.0047, respectively. (It should be noted that P(VS) is the area under the signal curve to the
right of the criterion, and that P(FS) is the area under the noise curve to the right of the criterion.)
Because of the complimentary relationship between P(VS) and P(AC), the probability of an
ACCIDENT is quite high with the criterion set at 1.65: P(AC) = 0.945. Leftward shifts in the
criterion would increase P(V'S) and decrease P(AC). For instance, if the criterion is set at avalue
of 1.35, then the values obtained for P(VS) and P(FS) are 0.34 and 0.08. A criterion set at 1.05
would cause P(VS) and P(FS) to have values of 0.79 and 0.42. Consequently, in these three
examplesthe probability of an ACCIDENT (P(AC)) would changefrom0.945t00.66t00.21. Note
that these changes in the probability of an ACCIDENT have not involved changes in the
detectability of the locomotive or train.

In SDT detectability is independent of the setting of the criterion. Mathematically,
detectability (sometimes referred to as sengitivity) is defined as the difference between the means
of the signal and noise distributions divided by their common standard deviation:

_ BT (1)
.

d/

In the example illustrated in Fig. 1, the mean of the noise distribution is 1.0 and that of the signal
distribution is 1.25. Each distribution has been created to be normally distributed with a standard
deviation of 0.25. Asaresult, thevalue of d' for theexamplein Fig. 1. will dwaysbe 1.0. In most
practical situations, however, the meansand standard deviationsare usually not known. Under these
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circumstances detectability is often derived from outcome information, namely P(VS) and P(FS).
Note that if the distributions are normal and of equd variance, then the formula for d' can be
rewritten asthe difference of two standardized (z-) scores. For instance, if acriterion c isselected,
z-scores for the noise and signal distributions can be defined as:

el 2)
z,= ,
o
and
c_
Gl -
(6)

By definition, z, is the standardized score for HITS and z, is the standardized score for FAS:

(c-m,) - (c—1y)  w,-m,
o o

d'=z -z =
n S

(4)

Because they are observable and can indicate the separation of the signal and noise
distributions aswell asthe location of the criterion, P(VS) is often plotted as afunction of P(FS) in
aplot which is called a Receiver-Operator Characteristic (ROC) curve. Figure 2 illustratesthisfor
thedistributionsshown in Fig. 1. Each point on a ROC curve correspondsto a particular criterion
line. The line which connects the origin (0,0) with the upper right corner (1,1) corresponds to the
ROC curvefor identical signal and noisedistributions(i.e., d =0). TheROC curvewhichislabeled
"d'=1" was generated from Fig. 1. The ROC curve labeed "d' = 2" was generated from the same
noisedistribution as that in Fig. 1, but with asignal distribution with amean of 1.5 and a standard
deviation of 0.25.

The ROC curvefor d = 2illustratesthe effect of an increasein detectability onthe outcome
probabilities. For acriterion value of 1.35, P(VS) = 0.725 and P(FS) = 0.08. Recall that for d' =
1, for the same criterion P(VS) = 0.34 and P(FS) = 0.08. Thus, anincrease in detectability reduces
the accident rate from 0.66 to 0.275 at a constant criterion.

Decision-Making: Setting the Criterion

Setting the criterion involves the process of decision-making. To this point we have not
discussed how the criterion is set, or how a criterion can be changed. From the discussion above,
it should be clear that the accident rate is directly influenced by changes in discriminability of the
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locomotiveand by thesetting of the criterion. Consequently, decision-makingisanimportant aspect
of the SDT mode!.

pivALID STOP)

0 0.2 0.4 0.6 0.8 1
p(FALSE STOP)

Figure 2. Receiver-operator characteric curves for Figure 1 and other conditions described in
the text. The value, c = 1.335, indicates two points with a constant criterion.

Aswas noted above, the distributions of signal and noise are assumed to overlgp. Suppose
aperceptual event of magnitude x occurswhich fallsinto theregion of overlgp. The probability that
the event, x, came from the noise distribution is the conditional probability, P(x|n). Similarly, the
probability that x came from the signal distribution isP(x|s). A rational decision concerningwhich
distribution x came from can be made on the basis of these two conditional probabilities. The
likelihood ratio (L), which is defined as P(x|s)/P(x|n), indicates the likelihood that x arose from the
signal distribution. Put differently, L indicatesthe strength of the evidencethat the event was, inour
example, a"train is close" percept. L isnot aprobability and can range from zero to infinity.
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Signal sand noise, however, do not always occur with equa probability. Thisisparticularly
true of trains at grade crossings. The probability of asignal P(s) and the probability of noise P(n)
during any observation interval areimportant to the observer. In SDT these probabilitiesarecalled
the prior probabilities. The observer has no control over the prior probabilities, but has knowledge
of them based on experience, etc. If the prior probabilities are equal, then L provides a direct
estimate of the odds that x arose from the signal distribution. Thelikelihood that the evidence was
asignal or anoiseisequa whenL = 1. Thisoccursin Fig. 1 where the two distributions crossover.
L > 1 for al perceptua magnitudes to the right of the crossover. Thus, the likelihood that the
evidencewasasignal isgreater asthe perceptual magnitudeincreases. If theprior probabilitiesare
not equal, then the likelihood ratio does not provide an estimate of the odds that x arose from the
signal distribution, and the posterior probabilities must be considered.

The posterior probabilities are the conditional probabilities of signals and noises given the
sensory evidence, x: P(sx) and P(n|x), respectively. Note first that since there are only two
categories, sand n, P(s|x) + P(n|x) = 1. By definition the joint probability, P(s,x) = P(x|s)+P(s) =
P(g]x)*P(x). Consequently,

P(x|s)*P(s) _ P(x]s)*P(s)

P(slx) = P(x)  P(xls)*P(s)+ P(xln)eP(n) ©

The posterior probability, P(n|x), can be similarly defined:

P(x|n)*P(n) _ P(x|n)+P(n) .
P(x) P(x|s)eP(s) + P(x|n)*P(n) . (6)

P(n|x) =

Theratio of the posterior probabilities, P(s|x)/P(n|x), is called the posterior odds and it indicatesthe
likelihood that a signal was present given the evidence, x. The posterior odds are

P(slx) _ P(s) , P(ls) _ P(s) ;. -
P(nlx) P(n) P(x|jn) P(n)

Thislast equation indicates that two sources of information are contained in the posterior odds: the
relative frequency of occurrence of thetwo events, sand n, and thelikelihood ratio. Inthisway the
observer's expectations about the frequency of the events and the sensory information provided by
the evidence are combined in the posterior odds. Decisionsin SDT are made on the basis of the
magnitude of the likelihood ratio, L, relative to some decision criterion. Itiseasily seentha L is
amonotone function of the pogterior odds.
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Decision strategies come in many forms and may not even be rationally based. We will
consider themost common strategy only. Decision strategiesare usually theresult of decisiongods.
A common goal informing decisionsisto maximize the expected value. Assume that the observer
has a value (positive or negative) for each of the outcome cellsin Table 1. Table 2 illustratesthis.

TABLE 2. PAYOFF MATRIX.

Yes, stop No, don't stop
Trainiscose V(sY) V(s,N)
Trainisnot close V(n,Y) V(n,N)

In Table 2 each of the outcomes has a probability of occurrence as well asavalue. The expected
value of an outcome, by definition, isits probability multiplied by its value. The probabilities of
concern here arethejoint probabilitiesof signal and a"Y es' response[P(Y,s)], anoiseanda"Y es'
response[P(Y,n)], etc. By definition, P(Y,s) = P(Y|s)*P(s), P(Y ,n)=P(Y [n)«P(n), etc. The expected
value of the decision isthe sum of al of the expected values for the outcomes. Hence the expected
value, E(V), for Table2is

E(V)=P(Y|s)eP(s)*V(S,Y)+P(Y [n)eP(n)eV (n,Y)+P(N|s)*P(s)*V (s,N)+P(N|n)eP(n)V (n,N).
The goal isto maximize E(V) which is accomplished by drawing the criterion line so asto achieve

this. Thisisdone by maximizing: P(Y|s) - BP(Y|n). Green and Swets (1974) show that  isgiven
by

p= LN+ V(n 1)  P(n)

(s, 1)+ V(s;N) P(s)’ )

The expected value is maximized by saying "Yes' whenever the likelihood ratio, L, isequal to or
exceeds B. Inshort, B defines the location of the criterion linein Fig. 1.

If P(s) = P(n), then B isonly determined by the values of the outcomes. If all of the values
of the outcomes are equal, f3 is only determined by the prior probabilities. When the values of the
outcomes are all equal and the prior probabilitiesare also equal, p = 1. Aswas nhoted above, thisis
the value of L at the crossover of the signal and noise distributionsin Fig. 1.

We are now in a position to examine the effects of bias on the decision-making of our
motorist. In SDT bias is defined as the tendency of an observer to place his or her criterion
anywhere except at the intersection of the noise and signal distributions (i.e.,, p = 1). Biasis
independent of detectability (also called sensitivity or discriminability and measured by d' as noted
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above) and isdetermined by the observer's expectations (probability of signal, probability of noise),
motivation (values of each of the decision outcomes), and other cognitive functions (e.g., memory,
attention, decision strategy). For instance, adriver who isfamiliar with aparticular grade crossing
has an expectation regarding the frequency of trains at that crossing. We will use as an example a
crossing where the frequency of trainsvaries markedly with time of day: on arailroad which carries
only heavy morning and evening commuter trains. Driverswho use the crossing at different times
of day will have markedly different expectations regarding the frequency of trains at the crossing.
Thisis captured by the prior probabilities. Suppose trains are more frequent between 7 AM and 9
AM than they are between 1 PM and 3PM, and that Driver #1 (the morning driver) usesthe crossing
to go to work between 7:30 AM and 8 AM and Driver #2 (the afternoon driver) uses the same
crossing between 1 PM and 3 PM to visit arelativein anursing home. If P(s) = 0.62 (62 out of 100
timesthedriver encountersatrain at the crossing) for the morning period and P(s) = 0.26 (26 out of
100 times the driver encounters atrain at the crossing) for the afternoon period, the ratio, P(n)/P(s)

for the two periods are 0.38/0.62 = 0.61 and 0.74/0.26 = 2.8, respectively. Hence, for the morning
B = 0.61 and for the afternoon p = 2.8. Both drivers have a bias, because p = 1. For the morning
driver, thereisabiasto say "Yes, thetrainisclose, stop” given the identical sensory information
that the afternoon driver gets. This can dso be viewed in terms of the perceptual magnitudes that
each driver would require to indicate that he or she detects a close train (i.e., the "threshold” for
detection). Referring to thedistributionsof Fig. 1, one can find the perceptual magnitudes which
correspond to the values of 3. Expected value is maximized by saying "Y es' whenever L isequal

toor exceedsp. L istheratio of the probability denstiesat each percept magnitudein Fig. 1. Thus,
values of L map directly onto percept magnitudes in Fig. 1. Given the distributionsin Fig. 1, a
percept magnitude of 1.15 would be the "threshold" for the morning driver to say atrain was close,

and a percept magnitude of 1.45 would be the"threshold" for the afternoon driver. For the morning
driver P(VS) = 0.65 and P(FS) = 0.27, while for the afternoon driver P(VS) = 0.21 and P(FS) =
0.035. Referring to Table 1, the probability of an ACCIDENT (P(AC)) is 0.35 for the morning
driver and 0.79 for the afternoon driver, even though all other conditionsareidenticd. It shouldbe
also kept in mind that for both drivers the train is assumed to be equdly discriminable. Thisis
shown in Fig. 2.

This observation may appear surprising, but it has been made previously with regard to the
rail-highway grade crossing by Lerner et a. (1990, p. 3-12):

A related principle from the area of signal detection theory is that the higher the perceived
probability of an event, the higher is the likelihood that an observer will report having
detected the event. If the driver assignsalow probability to the presence of atrain & arail-
highway crossing, he will adopt a higher criterion for detecting the train, and this will
increase his chances of missing the train. It is important to note that the criterion for
detection is not consciously set, but rather corresponds to the amount of visual "evidence"
required for detection.

SDT predictsthat expectationsplay amajor rolein accidentsa rail-highway grade crossings.
All other things being equal, this analysis suggests that crossings with alower frequency of trains
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should have a higher accident rate. Thus, for a particular type of crossing (active vs. passive
protection, etc.), thefrequency of trains should vary inversely with the accident rate at the crossing.
This prediction will be explored in Section 11.

Expectations also play arole with regard to signage at grade crossings. From the point of
view of SDT, arole of signhage is to inform the motorist that trains are frequent at the crossing.
Personal experience with acrossing, however, is likely to be more important since a sign does not
indicate the actual frequency of trains. Motoristswho are unfamiliar with a grade crossing which
has signage posted should assumethat trainsare highly frequent and exhibit ahigh degree of caution
relative to motoristswho are familiar with the crossing. This prediction of SDT is supported in the
literature. Lerner et a (1990, p. 3-61) state that

There is no question that familiar and unfamiliar drivers often behave differently at
crossings, and that traffic is sensitive to the schedule of train operations. Sanders € al.
(1973) found that driver looking and speed reductions were inversely correlated with the
frequency of using the crossing. Expectanciesbased onfamiliarity have beenimplicated in
accident causation research (Knoblauch et al., 1982). Sanderset a. (1973) also found that
drivers were sensitive to the actual frequencies of trains. The correlation of looking with
train frequency at the crossing wasr = 0.66, and the correl ation of speed at the crossing with
train frequency wasr = -0.85. Others have reported similar findings (e.g., Aberg, 1988).

V aues associated with decision outcomes are al so predicted to play arolein driver behavior
at grade crossings. Again, the analysis assumes that all other aspects of the situation are the same,
including the detectability of thetrain. Consequently, thedistributionsof Fig. 1 will again be used.

Recall that the morning motorist was driving to work and that the afternoon motorist was
driving to visit arelativein anursing home. For both driversthisisadaily trip. However, thereare
different val uesassociated with the outcomes of decisionsat the crossing for each driver. Moreover,
the values are not necessarily monetary or even linear with dollar value. Thus, for the purposes of
illustration, numbers indicating relative subjective value will be assigned to the outcomes in the
payoff matrix so asto allow p to be calculated.

TABLE 3. PAYOFF MATRIX FOR MORNING DRIVER.

Yes, stop No, don't stop
Trainisdose 0.5 -20
Trainisnot close -10 1
XING09.SDT 12 July 95

VERSION 2.1 12



TABLE 4. PAYOFF MATRIX FOR AFTERNOON DRIVER.

Yes, stop No, don't stop
Trainisdose 1 -20
Trainisnot close -1 1

Tables 3 and 4 present payoff matrices for the morning and afternoon drivers, respectively.
For both driversit isassumed that avery large negative value is associated with the error of saying
"NoO" when in fact atrainisclose. Also, for both driversthereis arelatively small positive value
associated with correctly saying "No". The drivers differ with regard to the vdues of the "Yes'
responses. The morning driver is going to work, and saying "Y es' means that he will dday his
arrival at work because of a necessary or unnecessary stop at the crossing. Consequently, a
moderately high negative value is associated with stopping unnecessarily, and avery low positive
valueisassociated with stopping for atrain. By contrast, the afternoondriver hasequally low values
associated with the consequences of a"Yes' response.

If we assume that P(s) = P(n) for each driver, the value of p for the morning driver is 0.54,
while for the afternoon driver it is 0.095. In terms of thresholds, the morning driver requires a
perceptual magnitude of 1.03 to cause a stop; the afternoon driver requires only a perceptual
magnitude of 0.58. Because of the perceived negative consequences associated with stopping, the
morning driver is much more willing to risk an accident.

It was previously noted that thefrequency of trainsdiffered substantially for themorning and
afternoon drivers. When thisis aso included in the calculation of f, it is found that the morning
driver now requires a perceptual magnitude of 0.8 (B = 0.33) and the afternoon driver requires a
perceptual magnitudeof 0.85 (p =0.27). Thusthe higher frequency of trainsin the morning causes
themorning driver to becomemore conservative, whilethelower frequency of trainsintheafternoon
causes the afternoon driver to become less conservative.
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1. ACCIDENT RATESAT GRADE CROSSINGS
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Figure 3. Accidents per crossing per year for the year 1986. See text for details.

SDT predicts an inverse relationship between train frequency at a grade crossing and the
accident rate at that crossing. This prediction appearsto be counterintuitive, since onewould expect
the highest accident rate to occur where theexposureisthe highest. This section discusses accident
rates and exposure.

Accident Rates and Exposure

Accident rates are usually reported so asto equalize differencesin exposure. For example,
the Rail-Highway Crossing Accident/Incident and Inventory Bulletin reports accidents as a rate
(accidents per crossing per year) for each of the grade crossing protection device categories’ rather
than as accidents per year. This is because there are different numbers of crossings which are
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protected by the various devices, and the most common device will have more opportunities for
accidents. However, thisisnot sufficient to equalizethe accident exposure of different devices. For
instance, as can be seen in Figure 3, the accident rate is much higher for categories 8 (gates), 7
(flashing lights) and 6 (highway signals, wigwags, or bells) than for any other device category.
However, since device categories differ with regard to the number of trains per day and the number
of cars per day that traverse the crossings at which they are placed, it is obvious that the device
category with ahigher amount of train and/or car trafficwill have ahigher accident rate. To reflect
the true (equal exposure) accident rate for each device category the rate should be reported as the
number of accidents per crossing per train per car per year (i.e., divide the reported accident rate by
the average number of cars and by the average number of trains). The analysis of train frequency
which follows uses equal exposure accident rates.

1.6E-05

ACCIDEMT SICROSSINGYEARTRAINCAR

1 10 100
TRAIN FRECIUENCY

Figure 4. Accidents per crossing per year per train per car as a function of train frequency.
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Train Frequency and Accident Rate

Based on data provided in the Rail-Highway Crossing Accident/Incident and Inventory
Bulletin, Figure 4 plots accidents per crossing per train per year as afunction of train frequency for
1986. From Fig. 4itisclear that the prediction of SDT iscorrect. Per train, accident ratesare higher
for crossings with the lowest frequency of trains. Thisis a direct effect of the decision-making
process at the crossing because P(S)/P(N) determines the setting of the criterion, as described in
Section I.

Figure 4 plots accident rate as a function of train frequency averaged across device types.
Protection devices are placed at grade crossings on the basis of the number of carsand trains at that
crossing. Infact, the device categories noted aboveconstitute arank ordering of deviceswith respect
totrainand car frequency. Consequently, SDT also predictsthat that rank ordering, to the extent that
it reflectstrain frequency (whichit only doespartialy), should beinversely related to equal exposure
accident rate.
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Figure 5. Equal exposure accident rates (accidents per crossing per train per car per minute) for
the various device categories. See text for details.
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Information on the frequency of trains and cars for different device categories is also
provided in the Rail-Highway Crossing Accident/Incident and Inventory Bulletin. Tables 53 and
58 in the 1986 bulletin are typical. For easy reference, they are presented as Tables Al and A2 in
the Appendix.

There are two problems with the information that is presented in Tables Al and A2. First,
the frequencies are reported per day rather than per year. Obvioudly, al the units of frequency
should be the same, and for reasons which will soon be apparent, all rates in this report will
henceforth be expressed asthe number of observations per minute. Second, afrequency distribution
isprovided for each category rather than asingle measure of central tendency such asamean. With
regard to this problem, sincethefrequency distributionsincludebinsfor < 1 and > 25, amean cannot
be calculated from the information provided. A reasonable alternative, the median (which isalso
arobust measure of central tendency), can be easily calculated and is used to estimate the average
number of trains and cars per min for each device category. Thisinformation is presentedin Table
5.2

Figure 5 shows the equal exposure accident rate (accidents/crossing/train/car/min) for the
various device categories. Given the normalization for traffic (cars and trains) exposure through
different crossings, it can be seen that cross ngs with only crossbucks have the highest accident rate
and crossings equipped with gates have the lowest rate. With the exception of crossbucks and
specia warning devices, theinverserelaionship predicted by SDT holdswell. Asnoted abovethis
discrepancy could be dueto thefact that the rank ordering of the devicesal so includesthefrequency
of cars.

TABLE 5. Median Train and Car Frequencies As a Function of
Grade Crossing Warning Device Category.

Device Category | Median Trains/min | Median Cars/min
Gates 0.009 2.08
Flashing Lights 0.0028 2.08
Highway Signals 0.0028 0.52
Special Warnings 0.001 2.08
Crossbucks 0.0028 0.09
Stop Signs 0.0028 0.09
Other Signs 0.001 0.26
No Signsor Signals 0.001 0.09
XING09.SDT 12 July 95

VERSION 2.1 17



The above analysis suggests that, in part a least, the accident rate at grade crossings is
determined by decision-making processes based on the frequency of trains at the crossing. This
aspect of the decision-making process (i.e., the aspect that relates to train frequency) is probably
independent of the grade crossing device, unlessthe deviceal so conveysinformation to the motorist
concerning train frequency. In the absence of objective information concerning the frequency of
trains at a crossing, motorists must be assumed to rely on the perceived and remembered frequency
of trains. This could be problematic, because the heuristics that people use to estimate the
probability of an event can lead to severe and systematic errors(Tversky and Kahneman, 1974). For
instance, amotorist who normally travelsover agrade crossing when thereislight train traffic could
wrongly conclude that the same is true at all times of day. Accurate information concerning the
frequency of trains at a grade crossing could help to ameliorate the contribution of these effects to
accidents.

Grade Crossing Protection Device Effectiveness

The above analysis begs the question of how effective different grade crossing devices
actually are. At first glance one might suggest that the equa exposure accident rate speaksto this
point, but careful consideration of Fig. 5 indicates that there is a problem with accident rate data.
For instance, crossings protected by crossbucks have an even higher accident rate than crossings
which haveno signs at all. Since we would expect any sign to be more effective than no sign, this
illustrates the problem, noted above, of using accident rate data as an indicant of device
effectiveness. The accident rate confounds the reduction in accidents with the risk of accidents.
Adjusting the accident rate for exposure does not unconfound these elements because we do not
know how many accidents might have occurred if no device was in place. Two elements are
required to determine the effectiveness of a device to prevent accidents:. the accident rate (observed
frequency of accidents) and the accident risk (how many accidentswould have occurredif thedevice
wasnotinplace). Inthe previous subsection an equal exposure accident rate was developed. Inthis
subsection we devedoped a metric for accident risk. In the following section (Section I11), we use
that information to ask a more complex question: do grade crossing devices achieve thar
effectiveness by enhancing the sgnal-to-noise ratio (S/N) or by changing the location of the
criterion?

Accident risk

Accident risk is defined here as the probability that both atrain and a car will be observed
at agrade crossing during any one minute observation period. As noted above, the Rail-Highway
Crossing Accident/Incident and Inventory Bulletin providesinformation on the frequency of trains
and cars for the various device categories. The average (i.e., median) frequency of trains and cars
for each device category was used to equalize exposure for the accident rate data. The same
information can also be used to determine accident risk.

Two probabilities are required to determine accident risk for a particular grade crossing or
a grade crossing category: the probability that in a one minute period one or more trains will be
observed at the grade crossing and the probability that in a one minute period one or more
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Figure 6. Maximum probability of an accident for various devices. See text for details.

carswill be observed at the grade crossing. If we assume that trains and cars are random events,
equally likely to occur throughout the day, and that each occurrence of atrain or acar isindependent
of the occurrence of other trains or cars, then the Poisson probability distribution can be used to
model the situation (see Feller (1957), Parzen (1960), and Daniel (1974) for more detail on the
Poisson distribution and its uses).

If x is the number of occurrences of a tran (car) in a one minute’ period of time, the
probability that x will occur is

e—)ukx

o (9)

p(x)=

The parameter A isthe mean rate of occurrence, and can be estimated by the average frequency of
trains (cars) as described above’. The probability that one or more trains (cars) will occur in aone
minute period of time is the cumulative Poisson probability distribution for 1 < X < «, or 1 - p(0).
This can be written as

p(ls X < =) = 1- €. (10)

The product of the probability of one or more trains being observed in a one minute period
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and of the probability of one or more cars being observed in a one minute period at the crossing
provides an estimate of the maximum probability of an accident (i.e, risk). Thisis presented in
Figure 6 for the various categories of protection devices. Since the risk of an accident is based on
the probability that one or more cars and trains will be observed at a grade crossing within a
specified one minute period, and these probabilities are based on the frequency of trainsand cars at
grade crossings, it is not surprising that the greatest risk exists for those devices which have the
greatest aggregate train and car traffic. This supports the validity of the procedure for estimating
accident risk.

Device Effectiveness

Given an estimate of risk (accident probability) and an observed rate of accidentsfor various
crossing devices, device effectivenessis easy to estimate. It should first be noted that sincerisk is
defined as a probability, it is not necessarily directly comparable to the observed accident rate.
However, at the low rates of occurrence observed in Fig. 5, the accident rate is the same as the
probability of observing one or more accidentsin a one minute period & a grade
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Figure 7. Device effectiveness for various grade crossing devices. See text for details.
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crossing.® It should be noted that the abscissain Fig. 5isalready labeled as a probability domain.

Device effectiveness is determined by comparing the risk of an accident (maximum
probability) with the observed probability of an accident. Figure 7 showstheratio of therisk to the
observed probability for each device category on alogarithmic scale. If theratio hasavalueof 1,
the device has no effectiveness since the observed probability of an accident isthe same astherisk.
Ratios greater than 1 indicate increasing levels of effectiveness. Gates are the most effective
devices, followed by flashinglights, special warnings, and highway sgnals. Passivedevicesareless
effective than active devices by an order of magnitude. Finally, grade crossings without any
protection (no signage) have a higher probability of accidents than is expected on the basisof train
and car traffic.
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Figure 8. Hypothetical ROC plot demonstrating the possibility that grade crossing devices differ
in effectiveness because of sensitivity differences. The major diagonal (lower left corner to upper
right corner) shows zero sensitivity (d' = 0). The minor diagonal (upper left corner to origin)
shows zero bias. Points which fall above the minor diagonal have a bias to stop, while points
which fall below the minor diagonal have a bias to cross. The devices all have points along the
minor diagonal (no bias) but differ in sensitivity. Gates have the highest sensitivity (d' = 6), and
no signage has the lowest sensitivity (d' = 0.2). See footnote 7 for details concerning the use of
different axes in this figure and in Fig. 2.

In the previous section we determined the rel ative effectiveness of the various categories of
grade crossing protection devices. In this section SDT is applied to grade crossing devices to
determine the source of that effectiveness. From the point of view of SDT, there are two major,
independent classes of variables which can influence effectiveness. One is the separation of the
signal and noise distributions. For a constant decision criterion, as the S/N ratio increases, the
probability of an ACCIDENT (P(AC)) decreases. This factor involves the relative magnitudes of
the signal (train) and the noise (everything else in the immediate vicinity of the grade crossing).
Both signal and noise are multisensory stimuli, but SDT considers that each can be represented as
asingle perceptual magnitude. All other factors remaining constant, the "detectability” of asignal
increases as the S/N ratio increases. This means that increasing
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Figure 9. Hypothetical ROC plot demonstrating the possibility that grade crossing devices differ
in effectiveness because of bias differences. The devices all have the same sensitivity. The line
drawn through the points is an isosensitivity contour for d'=2. The devices all differ in bias.
Gates have the highest bias to stop, while no signage has the highest bias to cross.

locomotive conspicuity, increasing the audibility of train horns, decreasing visual obstructions at
grade crossings, etc., al increase the detectability of trains. The second factor involves human
decision-making processes and the setting of the criterion. Expectations, attention, motivation, and
decision goals constitute a short list of potentially important variables. In SDT these variablesare
independent of the S/N ratio, but affect whether the observer actson asignal (i.e., stops at the grade
crossing) or failsto act on asignal (doesnot stop). Sincethese variablesareindependent of the S/N
ratio, they do not affect detectability. They do affect the tendency of the observer to report or to not
report a signal, and therefore they are said to affect "bias'. In SDT, bias and detectability are
independent. Examples of what could alter bias at the grade crossing includes: train frequency
(expectancy of signal), signage (expectancy of signal?), time of day (motivation; factory workers
would have ahigher cost associated with adelay at the crossinginthemorning on their way towork,
than they would at the end of their work day). The question asked in this section is. Do grade
crossing protection devices achieve effectiveness because they increase the SN ratio, or because
they influence the setting of the criterion?
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Estimating Valid Stop and False Stop Rates

One can determine the source of effectiveness of gradecrossings by plotting the probability
of aVALID STOP ( P(VS)) vs. the probability of aFALSE STOP ( P(FS)) for each devicetypein
a Receiver-Operator Characteristic (ROC) plot similar to Fig. 2. |If grade crossings differ in
effectivenessbecausethey increasethe S/N ratio, then the most effective device (gates) should have
the highest value of d' and the | east effective device (no signage) should have thelowest value of d'.
Thispossibility isillustratedin Fig. 8 ". Onthe other hand, if grade crossings differ in effectiveness
because they influence the criterion (bias to stop), then the most effective device should have the
highest bias to stop (f<<<1) and the least effective device should have the highest bias not to stop
(B>>>1). Thispossibility isillustrated in Fig. 9. Notethat in Fig. 8 p is constant, whileif Fig. 9 d'
isconstant. The third possibility isthat both d' and p will vary with effectiveness.

The primary problem in performing a quantitative SDT analysis of grade crossings is
obtaining estimates of P(VS) and P(FS). P(VS) can be estimated from accident statistics. Recall
that P(VS) = 1-P(AC). P(AC) is the equal exposure accident rate which was developed in the
previous section, and P(VS) is easily calculated.

Accident risk was defined as the probability that a car and atrain are simultaneously in the
crossing. It was assumed that the car and the train cannot stop. Note that the situation in which a
car and atrain are at a crossing and the car does not stop also defines an ACCIDENT in SDT.
Hence, accident risk definesmaximum P(AC) [P(AC),..]. If thecar cannot stop, then the probability
that the car won't have an accident is 1-P(AC),..,. This can be taken as an estimate of P(CC). By
definition P(FS) = 1-P(CC) = 1-[1-P(AC),...] = P(AC),..- Consequently, in the ROC analysis that
follows, P(FS) is estimated from the accident risk associated with each devicetype.

Figure 10 isthe ROC plot for the seven grade crossing protection device categorieslistedin
the Rail-Highway Crossing Accident/Incident and Inventory Bulletin for 1986. The dashed line
drawn through the seven pointsis the mean d' value. The pointsall fall in close proximity to the
mean (dashed line), which indicates that there are very small differencesin the S/N ratio between
the different devices. The mean d' value is 7.13, which indicates that atrain at a grade crossing
represents an enormous signal relative to the background noise.

In Fig. 10, the solid line which has been drawn from the origin (0,0) to the upper left-hand
corner isthe equal bias (p=1) line. Pointswhich fall to the right of that line indicate a bias to stop
(B<1), and pointsto the left of thelineindicate a bias not to stop ($>1). The most effective device
(gates) has the highest bias to stop, while the least effective device (none) has the highest bias not
to stop. In addition, the bias to Sop is higher for active devices than it is for passive devices. A
statisticdly reliable correlation was found between device effectiveness (Iog(risk/probability)) and
B across devices (r = -0.77, p < .05). Thisindicatestha bias
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Figure 10. ROC plot for grade crossing devices ( filled square, gates; filled circle, flashing lights;
filled up triangle, special warnings; filled down triangle, highway signal; open square, cross
bucks; open down triangle, stop signs; open circle, other; X, no signage). The line drawn through
the points is an isosensitivity contour for d' = 7.13. See text for details.

accountsfor almost 60% of thevariationsin effectivenessinthedevices. By contrast, the correlation
of effectiveness and d' was not statistically reliable (r =-0.63, p > .05).

Based on the correlations and visual analysisof the ROC plot in Fig. 10, it can be concluded
that grade crossing devices achieve their effectiveness primarily because they affect the decision-
making process. Thereisno strong evidence in this analysis that grade crossing devices enhance
the S/N ratio. Ontheother hand, the correlation between d' and effectiveness, although not reliable,
was negative which indicates a possibility that the devicesactually degradethe S/N ratio. Sincethe
grade crossing and its protective devices are not a part of the train per se, this makes sense: the
auditory and visud stimulation produced by the devices must be adding to the noise, thereby
degrading the S/N ratio.
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IV. IMPLICATIONS
Therearetwo classesof variableswhich can be manipul ated to prevent accidents. First, there
are those variables which increase the S/N ratio. Second, there are those variables which increase
the bias to stop.

M easures to increase the SN ratio

The analysisin section |11 indicates that the SIN ratio is already very large since the value
of d' is approximately 7. This means that trans are highly detectable, which makes sense
considering their visual and auditory properties. However, there are numerous strategies available
to further increase the detectability of trans. This includes enhancing locomotive conspicuity,
reflectorization of freight cars, altering the train horn, and improving line of sight (reduction in
Noise).

Since detectability is already high, how big a reduction in accidents could be expected by
further increases in SIN? Conversely, what would happen to accidents if S/N were decreased?
Because P(VS) = 1-P(AC), and P(AC) isthe accident rate, these questions can be answered. From
the theory of the ideal observer we know that the relationship between d' and S/N is

d'=n(SN), (11)
where n isthe efficiency of ahuman observer relative to anideal observer. Thevalue of n isoften
assumed to be 0.4 (Potter et d., 1977). From equation (4) we also know that d' = z(VS) - z(FS).
Consequently, if biasis held constant, then we can relate changes in /N to changesin d' and to
changes in accidents.

Figure 11 shows the predicted number of accidents as a function of changes ind' for
crossings protected by gates using 1986 data. The base value of d' is 6.86, p is held constant at
.000927, and each change in d' of 0.25 units changes S/N by 0.625 units. In 1986 there were
approximately 1000 accidents at crossings protected by gates. This correspondsto the O changein
d pointinFig. 11. Changesof oned' unit cause accidentsto increase or decrease by almost an order
of magnitude. Onthebasisof thisanalysis, it must be concluded that even small changesinthe S/N
ratio can result in dramatic changes in the number of grade crossing accidents. Asacasein point,
when Florida imposed a ban on night-time use of train horns a three-fold increase in accidents
resulted. Figure 11 indicatesthat ad' change of about 0.75 units (1.875 unitschangein S/N) would
produce a change in accidents of this magnitude for crossings protected by gates, under conditions
of constant bias. If biasis not held constant (which would occur, for example, if P(FS) is hdd
constant), then the samethree-fold increasein accidentswould result from ad' change of about 0.25
units(.625 unitschangein S/N). Obviously, eliminating thetrain horn reduces S/N, so this"natural
experiment"” is consistent with the prediction of SDT.

Thisanalysis also hasimplications for the placement of horns at grade crossings instead of
on thetrain. It wasnoted above that grade crossings with active devices had lower d' values
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Figure 11. Predicted accidents as a function of changes in d' (sensitivity). See text for details.

than crossings with passive devices or no devices (see Fig. 10). Thiscould be because the crossing
isnot part of the train, and consequently increasesin light and sound at the crossing increase noise
and decrease S/N. SDT accordingly predictsthat automated horns should increase the accident rate
at grade crossings, regardless of whether they sound like train horns or not.

The same argument can be applied to theillumination of gradecrossings. To the extent that
such illumination enhances train visibility (i.e., thetrain isin the crossing and the train rather than
the pavement isilluminated), S/N will be increased, and accidents (particularly accidentsin which
the car hitsthe side of thetrain) should decrease. If illumination enhances the contrast between the
train and its background relative to daylight conditions, accident rates should be lower than during
the day (all other factors being equa). However, if the crossing is illuminated prior to the train
entering the crossing, the noise level will be increased and more accidents (particularly those in
which the car is struck by thetrain) should result.

Another obvious method to increase S/N, isto improvetheline of sight of the motorist at the
crossing and during the approach. In the absence of visual cues to the location of the

XING09.SDT 12 July 95
VERSION 2.1 27



10000

1000

100

ACCIDENTS PREDICTED

10 + } + } + } + } }
-1 0.5 n 0.5 1
CHANGE IN LOG BETA

L
i

Figure 12. Predicted accients as a function of changes in log . See text for details

train, the motorist must rely on asmaller signal which only consists of auditory and other non-visual
cues. Improvementsin thelineof sight would increasethe signal by adding visual cuesand increase
S/N.

Visual clutter (other traffic, traffic signs and signals, street lights, €tc.) at crossings would
tend to increase the noise and thereby reduce S/N. A reduction in visual clutter would increase S/N
and reduceaccidents. A recent FRA examination of 56 grade crossing with an average of morethan
one accident per year supportsthisconclusion. It wasfound that 97% of these crossings had visual
obstructions, 95% had alarge number of driveways and intersecting roadways, and 80% had visual
clutter on the approach.

M easures To Increase the Bias to Stop

In Fig. 10, the changes in bias () between crossings without sgnage and those with gates
were not specified. To correct that situation, it is hereindicated that for no signagep = 1.64 and for
gates B = 0.000927. P is calculated as the ratio of the ordinates of the standard normal curve
corresponding to z(VS) and z(FS):
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and y. issimilarly defined.

Recall that thereisno biaswhen p = 1. Valuesof p < 1indicate abiasto stop and values of
B > 1indicate abiasto not stop. Thedatain Fig. 10, therefore, indicates that there are very large
differencesin bias between crossings with no signage and crossings protected by gates. Since gates
produce such a large increase in the bias to stop, can afurther change in accidents be expected for
achangein biaswith d' held constant? For the sake of comparison with Fig. 11, the 1986 data for
gatesisused asan example. Figure 12 shows predicted accidents as afunction of the changeinlog
B. To allow comparability, d' has a constant value of 6.86, the base value of p is .000927, and
accidents range acrossthe samevauesasin Fig. 11. Log p isplotted instead of p to allow adirect
comparison with changesind' in Fig. 11. From Fig. 12 it can be seen that an increasein log p of
approximately .75 units results in approximately a three-fold increase in accidents. Accidents,
therefore, are almost equally affected by changesind' and log . Moreover, just aswas concluded
for d', even modest changesin p are capable of producing large changesin the number of accidents.

There are several variables identifiable in SDT which can be manipulated to change bias.
Recall the definition of p given in Equation 8:

p= V() + V(n. D)  P(n)
V(s,Y)+ V(s,N) P(s)

(8)

The ratio P(n)/P(s) relates to the expectation of the motorist that atrain will be encountered in the
crossing. Theratio V(n,N)+V(n,Y)/V(s,Y)+V(sN) relates to the motivation of the motorist with
regard to the value of Vaid Stops, Accidents, Correct Crossings and False Stops. Expectation and
motivation are "psychologica” variables, and in this context it should be emphasized that although
the terms of Equation (8) are dl capable of measurement at aphyscal leved (e.g., P(s) asaPoisson
probability based on the frequency of trains per minute at a crossing; V(s,N) as a dollar loss
associated with an accident), perceived or subjective probabilities and values would be more
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appropriate. People tend to overestimate the probability of low frequency events and to
underegtimatethe probability of high frequency events. Moreover, the subjective value of gainsand
lossesis not alinear function of dollar value. In the discussion which follows, when estimates of
probabilities(P) areavail ablethese aretransformed to subjective probabilitiesusing therel ationship:
¥, =P** where¥, isthesubjective probability of P. Similarly, the subjectivevalue of money (¥,)
is related to the true value of money ($) by: ¥, = $*° (Stevens, 1975).

Section |l hasdready confirmedthepredictionof SDT that accident ratesvary inversely with
train frequency. It should be noted from Equation (8), however, that expectation is multiplied by
the motivational factor to determine the value of . In most situations, it is probably the case that
both motivation and expectation are influential in determining B. This can be easily appreciated by
assuming that V(n,N)+V(n,Y)/V(sY)+V(sN) = 1 in Equation (8) and calculating p using the
Poisson probability of atrain that was developed in Section 11.

In the case of gates, Table 5 shows that the Poisson probability of atrainin the crossingis
0.009. Thesubjective probability of atrainisthen 0.19(0.19 = 0.009°*). ThisdefinesP(s) and P(n)
= 1-P(s), so that P(n)/P(s) = 4.2 = 3. Recall that if p > 1, thereisabiasto not stop. Consequently,
in the absence of motivation to stop, low train frequency predisposes motorists not to expect trains
and biases them not to stop. In Section 111, however, the value of  for gates was found to be
0.000927, which indicates alarge biasto stop. Therefore, there must be alarge motivational factor
which is counteracting the bias not to stop. The motivation to stop can be cal culated from Equation
(8) given the value of p = .000927 and with P(n)/P(s) = 4.2. The calculation indicates that the
motivation to stop is 4534.59 times the motivation not to stop (i.e.,, the motivation ratio is
1/4534.59). Interms of actuad costs and benefits, if the subjective value of not stopping is 1 and
subjective value of stopping is 4534.59, then the equivalent dollar amounts are $1 and
$20,562,506.47 (because ¥, = $°°, 4534.59 = [$20,562,506.47]°°). It should be kept in mind that
the $20,562,506 includesthe perceived cost of death, dismemberment, loss of property and grief due
to an accident, so perhaps this dollar ratio is not unrealistic.

Onemethod of increasing the biasto stop isenforcement of the law which requires motorists
tostopwhen gatesarelowered and lightsareflashing. Considering that thereisalready considerable
motivation to stop at lowered gates ($20,562,506), it seems questionable that a $50 or $100 fine
would be effective in further increasing that motivation. However, there are other costs associated
with fines which do not have a directly known dollar value. For instance, thereis inconvenience
and loss of time, especialy if acourt appearanceis necessary. Embarrassment caused by publicly
receiving a fine constitutes a social cost. If the act of non-compliance is considered a moving
violation, points can be added to the driver's license and the license might be lost, which can have
tremendous economic and personal consequences. Enforcement programs, such as the photo
enforcement program in Los Angeles (Meadow, 1994), have been shown to decrease violations
(which meansthat thereisan increasein compliance), sothe dollar value of the fine must not be the
only perceived cost of receiving afine.

The Los Angeles program found that photo enforcement decreased violations by 84%
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(Meadow, 1994). Inthe SDT model this means that P(FS), which is compliance, has increased by
84%. If we assume that d' remains unchanged and that only B is changed, it should be possible to
determine the change in the motivation ratio which a fine causes for the average gate-protected
crossing. For a 84% increase in P(FS), the bias to stop increases (B = 0.000138 rather than
0.000927) and the mativation ratio becomes 1/30,532. The corresponding dollar value, which
includes the dollar value of the fine, is $932,203,024. From this example it should be clear that
human motivation isnot limited to dollar-valued costs and benefits. A better understanding of the
motivation for stopping and not stopping has the potential for generating innovative, cost-effective
strategies for enhancing grade crossing safety.

Attention and Memory. Attention and memory have the capability to alter both p and d'. A
primary function of crossing devicesis probably attentional, and the variationin p with devicetype
is consistent with alink between attention and . In the psychophysical literatureit is often found
that attention to asignal does not affect d'. Instead, attention is found to enhance performance by
causing ashift in the criterion. Recall that Fig. 10 showed that different devicesdiffered in bias, but
notind'. Differencesin p asafunction of device type are probably, in part, the result of enhanced
expectation of atrain (i.e., the expectation ratio, P(n)/P(s), has been decreased). In thisregard, the
role that accurate information concerning train frequency could play in the further reduction of
P(n)/P(s) remains unexplored.

Because attention also involves orientation towards a source of stimulation, attention may
also serveto enhancethe S/N ratio. Signagewhich indicates where motorists should look for trains
would strengthen this function of attention, especidly if active devices were used to indicate train
direction. Notethat knowledge of train direction assumesthat the probability of atrainiscloseto
one. Signage which actively indicates train direction could function to enhance both d' and p.
Signalsand other changes in the sensory stimulation provided by grade crossing devices should be
more focused on causing motorists to orient toward the train. This should enhance the bias to stop
and ameliorate the previously noted decrement in S/N caused by the active devices (p. 26).

Memory has important functions for responding at the decision point and for stimulus
recognition. Motorists at a grade crossing must remember what responses are appropriate given a
particular device, the proximity of a train, and the consequences of the various outcomes.
Regardless of whether the motorist is stopped or in motion, imperfect memory at the decision point
can only bias the motorig to continue to remain stopped or in motion. Signage advising motorists
of the appropriate actions a the crossing could relieve the motorist of this human limitation and
enhance safety.

Memory can alsoaffect S/N through the process of stimulusrecognition. |mperfect memory
inthisinstance degrades S/N primarily by enhancing the noise. Driver education and public service
announcementsthat show motoriststhe appearance of locomotivesand trainsunder different lighting
conditions, angles, distances, etc. could improve stimulus memory and enhance S/N. Greater
consistency in the pattern of stimulation which locomotives provide to motorists (position and
number of lights, frequency and intensity of horns, etc.) would aso aid to improve recognition
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memory, and thereby S/N.

Accident Prediction

The SDT model can be used for accident predictionin situations for which specific changes
in S/N or B are under consideration. For instance, in the example where photo enforcement was
discussed relative to motivation, the model indicates that a 84% increase in compliance at the
average gate-protected crossing would also result in areduction in accidents. The moded predicts
a74%reductionin accidentsat the averagegate-protected crossing through photo enforcement based
on the 1986 data. Crossing accidents were observed to decrease by 60% at the photo enforcement
crossingsin Los Angeles (Federal Railroad Administration, 1994).

As a perceptual and sensory information processing model SDT is particularly suited to
evaluate avariety of sensory manipulaions (e.g., improvementsinline of sight) and psychological
manipulations (e.g., dollar amount of fines) which are not captured by any other accident prediction
model. Moreover, unlike other accident prediction models, SDT is based on clearly stated
assumptions concerning underlying processeswhich have been systematically studied over a30year
period. Asatheoretical model, rather thanan empirical modd, SDT hastheflexibility toincorporate
new variables and can be used to extrapol ate predictions beyond the empirical inputs. The unified
view of accident causation at grade crossingsprovided by SDT allowsan understanding of trade-offs
between sensory and decision-making variableswhich isunavailable in other models. Asamodel
of human behavior it can be used in both a descriptive (how do people actually perform) and a
prescriptive (how would an ideal observer perform) mode. An SDT analysis of a grade crossing
allows essential engineering datato be used within the context of human decision making. No other
model of accident prediction has this capability.

However, for SDT to be fully useful asamodel of decision-making at the grade crossing,
there are anumber of areas in which moreinformation isrequired. Recall that it was necessary to
estimate P(FS) from the maximum probability of an accident. P(FS) isan aspect of compliance and
this had to be estimated because there islittle good information on the average rate of compliance
or of P(FS) for various grade crossing devices. Compliancerates have most frequently been studied
inthe past when particular crossingsare noted to have an unusually high accident rate. Compliance
at "normal” crossings is unknown. The accurate determination of d' and p requires knowledge of
both P(VS) and P(FS).

Laboratory and/or field studies are also needed to determine basic relationships between
sensory aspects of the train and d'. For instance, recent basic and applied research on perception of
time-to-collision (e.g., Berthelon and Mestre, 1993; Bootsma and Oudejans, 1993; Kaiser and
Mowafy, 1993; Wannm, Edgar and Blair, 1993) has not considered the special problems of therail-
highway intersection. Whileitispossiblethat some of thisinformation isalready availablein the
psychological literature, the sensory magnitudeswhich trainspresent are not ordinarily encountered
inalaboratory setting. Consequently, verification of published relationships may be necessary. Of
particular concernisthe most appropriaterulefor combining multi-sensory informationintoasingle
percept. Prediction of the detectability and/or proximity of trains having various combinations of
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lights and audible warning devices requires information on how people integrate sensory
information.

Virtually no information exists concerning the motivation of motorists for stopping or not
stopping, how thisisaffected by thetype of deviceat the crossing, and effect of various enforcement
programs. No information exists concerning the perceived frequency of trainsat crossings and how
that is affected by protection devices and signage. No information exists on the perceived risk
present at crossings protected by different types of devices.

In the absence of quantitative information to specify the variables in the model, SDT will
remain a useful heuristic model but will not achieveits full potential as an analytic and predictive
tool. The basic model which has been presented here can be modified and refined to meet avariety
of demandsand needs. However, to do soit isnecessary to have quantitiative information available
to determine which aspects of the basic model are unsuitable. For instance, if it is determined that
the assumption concerning gauss an distributions of signals and noiseis not applicable, the theory
can be adapted to other probability distributions such asthe Gamma, Rayleigh, Chi-square, Poisson,
and Binomial distributions (Egan, 1975). The theory has been adapted to the analysis of attention,
conceptual judgment, learning, medical diagnosis, memory, personality, reaction time, recognition
and vigilance (Green and Swets, 1974). Consequently, the current application of the theory has a
wealth of resources on which to draw in order to improve our understanding of driver behavior at
the rail-highway grade crossing.
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IV. THEORY OF THE IDEAL OBSERVER:
TIME TO COLLISION,VISUAL SEARCH, AND ACCIDENT PREDICTION.

Thetheory of theideal observer isusedin SDT to model the performance of the perfect, or
ideal, observer. Such an observer uses all of the available information in a maximally effective
fashion to reach arational decision within the bounds of the model limits. Actual performance of
less than ideal observers can then be compared with that of the ideal observer to determine if the
model has validity in the search for underlying processes, or as a means to improve observer
performance (Swets, Tanner and Birdsall, 1964/1988). In the present instance, we explore the
possibility that the ideal driver bases decisions at grade crossings on subjective estimates of the
arrival time of his/lher own vehicle and of the train at the grade crossing. Visual search for and
localization of the train consumes time during which the decision to stop can be safely made and
directly affects accident probability. A guantitative description of these processes is presented
below.

Sight Distance and Time to Collision

Animportant aspect of driving behavior at grade crossingsisthevisual searchfor atrain, the
localization of that train, and a decision to stop or not stop at the crossing given the location of the
highway vehicleand train relativeto the crossing. Figure 13 diagramatically presentsthe situation.
The speed of the train and of the vehicle each determine the physical amount of time required to
arrive at the crossing. The Railroad-Highway Grade Crossing Handbook (Tustin et al., 1986)
defines two distances which are important for our analysis. The first, d,, is the "Sight distance
measured along the highway from the nearest ral to the driver of the vehicle which allows the
vehicleto be safely stopped without encroachment of the crossing area...” (p. 132). Theformulafor
d,is:

V2
d=1.47V t+ 3(;’f+ D+d_, (14

where V, is the vehicle velocity in mph, t is the perception reaction time in seconds, f is the
coefficient of friction, D isthedistancein feet from the stop line or front of the vehicleto thenearest
rail, and d, is the distance from the driver to the front of the vehidein feet.® The second, d,, isthe
"Sight distance along the railroad tracks to permit the vehicle to cross and be clear of the crossing
upon arrival of thetrain..." (p. 132). Theformulafor d; is:

v 2
dy= — (1.47V,t+ o+ 2D+ L+ 1), (15)

\

where V; isthetrain velocity in mph, L isthe length of the vehiclein feet, and W isthe distancein
feet between the outer rals.’
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Figure 13. Definition of distances used in equations 14 and 15.

Itisassumed that the highway vehicleandtrain areinitially located at d,and d., respectively.
Consequently, the vehicle can either stop or cross without an accident if the driver knows at that
instant the exact location of the train. However, the driver of the vehicle, as a human information
processor, must first locate the train, cal culae the distance and time to the intersection of both the
train and the vehicle, and decide whether to cross or stop. Assume that thisideal driver hasal the
information required to accurately solvethe equationsfor thetwodistances, oncethetrainislocated.
Since he knows the distances and the vel ocities of both the train and the vehicle, he also knowsthe
the amount of time he hasto cross (Tc) and theamount of timeto stop (Ts). Hisperception of these
times, however, is not veridical. Estimates of the relationship between judged time to passage
(TTP*) and actual timeto passage (TTP) were obtained from Kaiser and Mowafy (1993, Figs. 7 and
8) and were used to adjust the values of Tc and Tsto reflect this aspect of human time perception:

TTP* = 0.84375 TTP + 0.84375. (16)

It istypically found in the human time perception literature that short durations are overestimated
and that long durationsare underestimated. For instance, using therelationship above, a4 sduration
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would be judged to take 4.22 s and an 8 s duration would be judged to take 7.59 s.

The driver decides whether or not to cross on the basis of the perceived difference between
judged Tc (Tc*) and judged Ts (Ts*). The perceived difference between the two durations can be
modeled as follows:

n(Tc*-Ts™)

d’= : 17
o/ (Tc*)2+ (Ts™)? )

where p/o = y = aconstant (Raslear, 1988). v istheinverse of the Weber constant for time. An
estimate of y = 57.47 was obtained from a study of perceived time to collision by Bootsma and
Oudgjans (1993, experiment 1) for use in equation 17.

A value of d' can be determined for various vehicle speeds from equation 17. Train speed
is not a factor in determining d' because of the use of equations 14 and 15 to determine sight
distances. Onceavalue of d'isobtained, accident probabilitiescan be estimated for particular types
of grade crossings. As an example, grade crossings with crossbucks are considered.

The previous analysis of grade crossing warning devices provides an estimate for each
warning device of the probability of afalse stop (P(FS)). For crossbucks P(FS) = 0.000231. SDT
definesd = Z(VS) - Z(FS). Converting P(FS) into Z(FS) and adding d' from equation 17 to Z(FS)
yields Z(V'S), and the corresponding probability, P(VS), is easily obtained. By definition P(AC) =
1- P(VS), so the probahiliity of an accident is obtained.

Figure 14 showsthe probability of an accident asafunction of highway vehicle speed. Note
that the probability of an accident islow between 10 and 20 mph. Beyond 20 mph, the probability
of an accident rises steeply and begins to asymptote at very high levels above 50 mph. For
comparison, fatal crash datafrom Klein, Morgan and Weiner (1994) isalso plotted in Fig. 14. The
comparison should be considered tentative for several reasons: theKlein et a. dataisfor fatdities,
for a 10 year period, for all crossings, and is aggregated differently; while the prediction from the
SDT model uses accident data from one year for crossbucks. Nevertheless, there is a surprising
degree of agreement between the model and the data. In particular, both the model and the data
suggest that highway vehicle speed has afunctional role in accident probability at grade crossings.

Visua Search

Aswasnoted in apreceeding section, crossingswith ahigher than expected accident rateal so
tend to have a considerable amount of visual clutter. Visual clutter can be modeled by assuming
that the prediction in Fig. 14 isfor O items of visual clutter and that the 180° visual search requires
no time. Thus, the driver scans the visual field over a 180° range,
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Figure 14. Accident probability as a function of highway vehicle speed. The predicted function
is based on the model in equation 17. The observed data are from Klein et al. (1994).

instantaneously localizes the train and makes a decision. The process of visud search, however,
requires time. Moreover, the average search time for a specific item (the train) increases with the
number of itemsin the visua field. In addition, because visual search is a variable process (i.e.,
sometimes the target is found after examining one or two non-target items, and sometimes after
examining all non-target items), visua search adds variance to the time-based decision-making
process (i.e., equation 17). Visua search time has been extensively studied and an excellent
summary of that work can befound in Luce (1986, p. 428). The averagetimerequired to search for
an item isgiven by

S=3%kM+r, (18)

wherek isthe mean time per item, M isthenumber of itemsandr, istheresidual time. Thevariance
for visual search timeisgiven by

o2= oM+ O%, (19)
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Figure 15. Accident probability as a function of visual clutter and highway vehicle speed without
a train horn to indicate train location. See text for details.

where o,” is the per item variance and o, isthe residual variance. The modeling of visual clutter
in the search for a train consists of reducing the values of Tc* and Ts* in equation 17 by the
appropriate value of S in equation 18 and adding the variance obtained from equation 19 to the
variance (demoninator) of equation 17. *°

Figure 15 shows accident probability (based on crossbuck data) as a function of highway
vehicle speed and amount of visual clutter (0,4, 8, 16 and 32 items). Note that as the amount of
visual clutter increases, thereisacorresponding increase in accident probability. The model clearly
predicts that accidents should decrease as visual dutter is removed from a grade crossing.

Train Horns and Visual Search

If we assume that a horn has been placed on the train to aid in the localization of thetrain,
we can model the change in accidents that results. The sound localization literature indicates that
thereis approximately a 10° error in localization of a sound source for pure tones (Licklider, 1951,
p. 1026-1030). Since the motorist is searching a 180° field for the train, the inclusion of ahorn on
the train can be assumed to reduce the field of search to 10°. This means
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Figure 16. Accident probability as a function of visual clutter and highway vehicle speed with
a train horn to indicate train location. See text for details.

that visual search time and variance have been reduced by afactor of 1/18. Figure 16 shows the
effect of this changein the train by plotting accident probability as a function of vehicle speed and
visual clutter. Thetrain horn, by decreasing visual search time, also decreases the probability of an
accident. Figure 17 providesaclearer picture of thisby plotting the vehicle speed at which thereis
a0.5 probability of an accident asafunction of the number of visual distractorsfor atrain with and
without ahorn. In all instances, if no train horn is sounded, the same level of accident probability
occursat alower speed. A train horn, it must be concluded, enhances safety, and thisconclusionis
supported by the results of the Florida Train Whistle Ban study as noted previously.
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Figure 17. Highway vehicle speed at which thereis a 0.5 probability of an accident as a function
of visual clutter, with and without train horns.
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APPENDIX
TABLE Al. Tota Crossingsby Number of Trains Per Day
And Warning Device Category (From Table 53 of the
1986 Rail-Highway Crossng Accident/Incident and Inventory Bulletin).

NUMBER OF TRAINS
Device <1 1-2 3-5 6-10 | 11-15{( 16-20| 21-25 >25 Total

Gates 807 2063 2231 4082 2664 3224 2308 4687 22066
Flashing lights | 3491 7806 6181 7354 2880 2279 1068 1719 32778

Hwy. signals, etc. 291 689 376 425 181 128 71 110 2271
Special 2607 2300 781 465 234 189 49 137 6762
Crossbucks | 19160 | 40967 § 201850 18697 6346 4741 2381 3621 | 116098

Stop signs 136 304 239 131 46 43 23 40 962

Other signs 210 214 89 88 29 20 2 29 681
Nosigns | 3965 3692 1292 983 380 245 89 190 10836

Total | 30667 | 58035 | 31374 | 32225 | 12760 | 10869 5991 | 10533 | 192454

NOTE: Cellswhich areemphasized contain the median for thedevice. Thebin midpointisthemedian. For instance, for Gatesthemedian
is 13 trains/day. This means that 50% of these crossings had fewer than 13 trans/day and 50% had more than 13 traing/day.
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TABLE A2. Total Crossingsby Annual Average Dally Traffic
And Warning Device Category (From Table 58 of the
1986 Rail-Highway Crossng Accident/Incident and Inventory Bulletin).

ANNUAL AVERAGE DAILY TRAFFIC

1-250 251- 501- | 1001- | 5001- > Total
500 1000 5000 | 10000 | 10000

Gates| 2940 | 2167 | 2852 f 80250 3367 | 2715 22066

Flashing lights 4544 3671 4961 g 12386 4310 2906 32778
Hwy. signals, etc. 659 271 315 598 220 208 2271
Special 1508 844 871 2167 828 544 6762
Crossbucks § 763188 13864 | 10182 | 12435 2254 1045 | 116098

Stop signs 439 134 122 172 30 15 962

Other signs 288 148 96 102 37 10 681

No signs 5836 1195 1122 1882 520 281 10836

Total | 92582 | 22294 | 20521 | 37767 | 11566 7727 192454

Device

NOTE: Cellswhich are emphasized contain the median for the device. The bin midpoint is the
median. For instance, for Gates the median is 3000 cars/day. This means that 50% of these
crossings had fewer than 3000 cars/day and 50% had more than 3000 cars/day.
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FOOTNOTES

1. SDT terminology differs from what is presented here. In SDT, the names of the cellsin
Table 1 are asfollows:

Y es, Stop. No, don't stop.
Trainiscdose HIT MISS
(motorist stops at crossing) (accident)
Train isnot close, or FALSE Alarm CORRECT REJECTION
No train in vicinity (motorist stops unnecessarily) | (motorist crosses tracks
safely)

In the terminology of SDT, an accident would be called a MISS, and the avoidance of an accident
would be called aHIT. The use of alternative terminology seems advisable to avoid confusion.

2 . Device Categories listed in the Rail-Highway Crossing Accident/Incident and Inventory
Bulletin are: gates (category 8), flashing lights (category 7), highway signals, wigwags, or bells
(category 6), specia warning devices (category 5), crossbucks (category 4), stop signs (category
3), other signs (category 2), and no signs or signals (category 1).

3. It should be noted that several of the mediansin Table 5 areidentical. Thisisaresult of the
use of bins (ranges of values) in Tables A1 and A2. The median islocated in the bin which
cumulatively contains 50% of the observations. Sincethisisarange of valuesin Tables Al and
A2, the midpoint of the bin is used to represent the median. The inaccuracy which isintroduced
by this calculation is easily avoided by determining a mean based on train and car frequencies
reported at each crossing.

4. A oneminute observation period is suggested by the fact that the average freight trainis
approximately 67 carslong (AAR, 1993) and the average train speed through a crossing is 30
mph (Table 55, 1986 Rail-Highway Crossing Accident/Incident and Inventory Bulletin). At an
approximate car length of 50 feet, such the average train would take approximately one minuteto
go through the average crossing.

5. It should be noted that the mean is the recommended estimator of A in the present case.
The median is used of necessity and with full knowledge that it is not the optimal estimator of the
rate parameter of the Poisson distribution.

6. InEquation 10,as - 0,€*~ 1,and p(1 < X < =) - A.

7. Fig.8,9and 10 plot z(VS) vs. z(FS) rather than P(VS) vs. P(FS). This has severd
advantages for analytic purposes. Because it is assumed that the underlying probability
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distributions are normal and of equal variance, ROC curves which are plotted as normal deviates
(z-scores) are linear rather than curvilinear (asin Fig. 2). Asaresult, isosensitivity contours
(ROC curvesfor which d' values areequal) are all parallel to the maor diagonal (d' = 0 contour)
and haveaslope of 1. Moreover, because z-scores, unlike probabilities, have no upper limit,
high levels of sensitivity can be plotted and distinguished. This characterigtic of z-scores also
alows the effect of biasto seen at high leve s of sengtivity.

8. Insolving equation 14, D = 15, d,= 10, t = 2.5, and f was obtained from Table 35 in Tustin
etal.

9. Insolving equation 15, D =15,L =19, W =5,t=2.5, and f was obtained from Table 35 in
Tustinet d.

10. Thefollowing values of the parametersin equations 18 and 19 were used to apply the
model: k = 0.02, r, = 0.4 (Sternberg, 1966), o,,"M = M?/12 (variance of arectangular distribution
of M items), and 0,= 8.2944 (L uce, 1986, p. 428).
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